基本信息:
姓名:劉日成
出生年月:1986.03
學位:博士
職稱:教授/博導
研究領域:深部複雜裂隙岩體非線性滲流機理、岩石力學、流體力學、工程力學
招收研究生專業:岩土工程、工程力學、土木水利
E-mail: liuricheng@cumt.edu.cn
個人簡介:
劉日成,男,山東煙台人,教授,博導,伟德官网bv“優秀青年學者”。2010年7月獲得山東大學城市地下空間工程專業學士學位,并被保送為岩土工程專業碩士研究生,2011年4月參與中日韓水環境保護項目赴日本長崎大學攻讀碩士學位,2013年4月被保送為岩土工程專業博士研究生,師從蔣宇靜教授,2016年3月獲得日本長崎大學工學博士學位。2016年8月進入深部岩土力學與地下工程國家重點實驗室岩石力學與工程研究所從事科研教學工作,2016年12月破格晉升為副教授,2019年12月破格晉升為教授。曾多次(2017.01-2017.06和2017.11-2020.01)前往日本長崎大學開展訪學合作研究。
近10年來一直從事深部裂隙岩體分形特征、剪切-非線性滲流機理、深部地下能源開采與新能源地下存儲等方面的研究工作。入選江蘇省333高層次人才、江蘇省優青、日本學術振興會JSPS Fellow和中國科協青年人才托舉工程;獲山東省技術發明一等獎、中國發明協會發明創業成果獎一等獎(R1)、中國岩石力學與工程學會青年科技獎金獎(現改名為“錢七虎獎”)和科技進步一等獎、日本岩石力學學會優秀博士學位論文獎及優秀期刊論文獎、COGE期刊Scott Sloan最佳論文獎;主持國家自然科學基金面上項目與青年基金、國家重點研發計劃子課題、博士後國際交流計劃派出項目等課題16項,參與中日櫻花計劃2項、中日韓亞洲校園計劃·1項、中俄“一帶一路”創新合作國際交流項目1項、中美政府間國際科技創新合作重點專項1項;在IJRMMS、RMRE、TUST等國際權威期刊上,以第一/通訊作者發表SCI論文55篇,影響因子總和為256,其中8篇入選ESI高被引論文,以第一/通訊作者在《岩石力學與工程學報》、《岩土力學》等期刊發表EI論文10篇,研究成果已被引2802次,h指數為31,i10指數為59,單篇最高被引206次;以第一發明人授權發明專利12項(國際2項、國内10項)、軟件著作權4件、出版英文專著1部;擔任SCI期刊《岩石力學與工程學報(英文)》編委、《深地科學(英文)》和《應用力學學報》青年編委,兼任中國岩石力學與工程學會日本分會秘書長;受邀在2014年歐洲岩石力學大會、2016年和2017年日本岩石力學學會年度大會、第8、9、10屆亞洲岩石力學大會、China Rock 2018、2019、2021等國内外學術會議作特邀或專題報告20餘次,擔任分會場主席1次。
科研項目及人才計劃項目情況:
[1] 國家自然科學基金面上項目,51979272,深部岩體三維裂隙網絡高溫-應力-滲流作用機理研究,2020.01-2023.12,60萬元,在研,主持。
[2] 中華人民共和國科技部, 國家重點研發計劃項目, 2020YFA0711800, 頁岩儲層甲烷原位燃爆壓裂理論與技術, 2020-12 至 2025-11, 2779萬元, 在研, 子題主持。
[3] 中華人民共和國科技部,重點研發計劃(政府間國際科技創新合作),2022YFE0128300,幹熱岩水力壓裂複合擾動誘發地震機理及監測方法,2023-01 至 2025-12, 199.76萬元, 在研, 子題主持。
[4] 中國工程院,戰略研究與咨詢項目,2022-XZ-51,新時代城市地下空間發展戰略研究,2022.10-2023.9,150萬,在研,子題主持
[5] 江蘇省科學技術廳, 優秀青年基金項目, BK20211584, 增強型地熱系統水力剪切儲層增透機理及其對采收率的影響規律, 2021-07 至 2024-06, 50萬元, 在研, 主持
[6] 江蘇省科學技術廳,江蘇省科技計劃“一帶一路”創新合作項目(中俄),廢棄礦井再利用圍岩穩定及防滲控制技術的聯合研發,2020.6-2022.8,90萬,結題,子題主持
[7] 山東能源集團有限公司,9000B2022000200,山東省深層高溫地熱資源形成機制、分布規律研究及地熱資源調查評價,2022-07至2023-12,1644萬元,在研,子題主持
[8] 國家自然科學基金委員會, 青年科學基金項目, 51709260, 基于分形理論的三維岩體裂隙網絡非線性滲流機理研究, 2018-01-01 至 2020-12-31, 25萬元, 結題, 主持。
[9] 伟德官网bv, 重大項目培育專項, 2021ZDPYYQ002, 增強型地熱系統水力剪切儲層增透機理及其 對采收率的影響機制, 2021-01 至 2023-12, 40萬元, 在研, 主持。
[10] 西安理工大學, 國家重點實驗室開放基金, 2020KFKT-13, 基于CT掃描和3D打印的岩體三維裂隙網絡剪切機理及非線性水力特征, 2021-01 至 2022-12, 7萬元, 結題, 主持。
[11] 伟德官网bv深部岩土力學與地下工程國家重點實驗室, 自主課題學科前沿專項, Z18011, 基于分形重構的深部裂隙岩體滲透特性及氣态能源開采研究, 2018-10 至 2020-09, 20萬元, 結題, 主持。
[12] 江蘇省自然科學基金青年項目,BK20170276,深部岩體裂隙網絡分形特性與滲流特性研究,2017.07-2020.06,20萬元,結題,主持。
[13] 中國博士後科學基金會, 博士後國際交流計劃派出項目, PC2018094, 深部地下工程岩體的流-固-熱-化多場耦合作用機理研究, 2018-07 至 2020-06, 30萬元, 結題, 主持。
[14] 伟德官网bv, 學科前沿研究專項, 2017XKQY048, 裂隙岩體分形與非線性滲流特性研究, 2017-01至2019-12, 20萬元, 結題, 主持。
[15] 中國博士後基金面上一等資助,2017M610360,三維岩體裂隙網絡滲透系數預測模型研究,2017.04-2020.03,8萬元,結題,主持。
[16] 中央高校基本科研業務專項學科前沿項目,2017XKQY048,裂隙岩體分形與非線性滲流特性研究,2017.01-2019.12,20萬元,結題,主持。
[17] 日本學術振興會(JSPS)特别研究員研究獎勵費,17F17382,岩盤内水理物質移行機構の解明に基づく放射性廃棄物地層貯留安全性の評価,2017.11.01-2019.10.31,220萬日元,結題,負責人。(國際合作項目,國内方面負責人)
[18] 中央高校基本科研業務專項學科前沿項目,2018XKQYMS07,爆破荷載作用下深部硐室圍岩損傷演化與動态失穩機理,2018.01-2020.12,20萬元,結題,子題主持。
[19] 浙江省山體地質災害防治協同中心開放基金項目,PCMGH-2016-Z-01,基于3D打印技術的三維岩體裂隙網絡非線性滲流機理研究,2016/11-2018/10, 5萬元,結題,主持。
[20] 伟德官网bv第九批青年教師啟航計劃項目, 深部裂隙岩體滲流機理研究,2016/09-2018/08,3萬元,結題,主持。
[21] 入選日本學術振興會“外國人特别研究員”(JSPS),2017年11月。
[22] 入選中國科協第三屆“青年人才托舉工程”,2018年1月。
[23] 入選中國博士後“國際交流計劃派出項目”,2018年5月。
[24] 入選伟德官网bv“優秀青年學者”,2021年12月。
[25] 入選江蘇省“333高層次人才培養工程”(第三層次),2022年01月。
代表性論文(*為通訊作者):
2023年度
[1] S. Liu, S. Li*, R. Liu*, L. Yu, Y. Wang. (2023): Experimental study on evolutions of normal stiffness of fractured granites after different temperature treatments. Journal of Central South University. (SCI檢索) (accept)
[2] Z. Liu, S. Li, R. Liu*, C. Zheng. (2023): Nonlinear flow properties of Newtonian fluids through rough crossed fractures. Computer Modeling in Engineering and Sciences, 2023, 136(2): 1427-1440. (SCI檢索)
[3] L. Liu, Z. Li, J. Wu, L. Yu, S. Li*, R. Liu*. (2023): Effect of chemical corrosion on propagation of complex fracture networks under different hydraulic pressures in enhanced geothermal systems. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9, 16. (SCI檢索)
[4] 季浩奇,劉日成*,蔚立元,李樹忱,王曉琳. (2023): 卸載速率對卸載誘發頁岩滑移行為影響的試驗研究。岩石力學與工程學報,已錄用。
[5] 劉尚,劉日成*,李樹忱,蔚立元,胡明慧. (2023): 化學腐蝕下節理花崗岩法向剛度演變規律試驗研究。岩土力學,已錄用。
[6] C. Wang, R. Liu, Y. Jiang, G. Wang, H. Luan. (2023): Effect of shear-induced contact area and aperture variations on nonlinear flow behavior in fractal rock fractures. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(2): 309-322, (SCI檢索)
[7] 蔚立元, 楊瀚清, 王曉琳, 劉日成, 王蓥森. (2023): 循環剪切作用下三維粗糙裂隙非線性滲流特性數值模拟研究。岩土力學,已錄用。
2022年度
[1] R. Liu, Y. Wang, B. Li, H. Jing, S. Li, H. Yang. (2022): Linear and nonlinear fluid flow responses of connected fractures subject to shearing under constant normal load and constant normal stiffness boundary conditions. Computers and Geotechnics, 2022, 141, 104517. (SCI檢索)
[2] M. He, R. Liu*, Y. Xue, X. Feng, F. Dang. (2022): Modeling of Navier-Stokes flow through sheared rough-walled granite fractures split after thermal treatment. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8, 96. (SCI檢索)
[3] Z. Li, R. Liu*, S. Li, H. Jing, X. Li, L. Yu. (2022): Estimates of strength and cracking behaviors of pre-flawed granite specimens treated by chemical corrosion under triaxial compression tests. Frontiers of Earth Science, 16(2): 411-434. (SCI檢索)
[4] M. He, L. Yu, R. Liu*, Y. Jiang, Z. Li, X. Wang. (2022): Experimental investigation on mechanical behaviors of granites after high temperature exposure. Journal of Central South University, 29: 1332-1344. (SCI檢索)
[5] Y. Wang, R. Liu*, H. Ji, S. Li*, L. Yu, X. Feng. (2022): Correlating mechanical properties to fractal dimensions of shales under uniaxial compression tests. Environmental Earth Sciences, 82, 2. (SCI檢索)
[6] L. Yu, J. Zhang, R. Liu, S. Li, D. Liu, X. Wang. (2022): Estimation of the representative elementary volume of three-dimensional fracture networks based on permeability and trace map analysis: A case study. Engineering Geology, 309, 106848. (SCI檢索)
[7] J. Zhang, R. Liu, L. Yu, S. Li, X. Wang, D. Liu. (2022): An equivalent pipe network modeling approach for characterizing fluid flow through three-dimensional fracture networks: Verification and applications. Water, 14, 1582. (SCI檢索)
[8] D. Wu, L. Yu, M. Ju, S. Li, R. Liu, H. Su, L. Zhou. (2022): Study on the mode Ⅰ fracture properties of granites after heating and water-cooling treatments under different impact loadings. Rock Mechanics and Rock Engineering, 55: 4271-4290. (SCI檢索)
[9] Z. Liu, S. Li, X. Feng, R. Liu. (2022): Numerical study on shear-induced nonlinear hydraulic properties of fluid flow through fractures: The role of initial normal stress. Geotechnique Letters, 12: 209-216. (SCI檢索)
2021年度
[1] R. Liu, H. Jing, X. Li, Q. Yin, Z. Xu, M. He. (2021): An experimental study on fractal pore size distribution and hydro-mechanical properties of granites after high temperature treatment. Fractals, 29(4), 2150083. (SCI檢索)
[2] 劉日成,尹乾,楊瀚清,靖洪文,蔣宇靜,蔚立元. (2021): 恒定法向剛度邊界條件下三維粗糙節理面循環剪切力學特性。岩石力學與工程學報,40(6):1092-1109。(EI檢索)
[3] N. Huang, R. Liu*, Y. Jiang, Y. Cheng. (2021): Development and application of three-dimensional discrete fracture network modeling approach for fluid flow in fractured rock masses. Journal of Natural Gas Science and Engineering, 91, 103957. (SCI檢索)
[4] B. Li, J. Wang, R. Liu*, Y. Jiang. (2021): Nonlinear fluid flow through three-dimensional rough fracture networks: Insights from 3D-printing, CT-scanning, and high-resolution numerical simulations. Journal of Rock Mechanics and Geotechnical Engineering, 13: 1020-1032. (SCI檢索)
[5] B. Li, R. Bao, Y. Wang, R. Liu*, C. Zhao. (2021): Permeability evolution of two-dimensional fracture networks during shear under constant normal stiffness boundary conditions. Rock Mechanics and Rock Engineering, 54(1): 409-428. (SCI檢索)
[6] Q. Zhang, X. Wang, B. Jiang, R. Liu*, G. Li. (2021): A finite strain solution for strain-softening rock mass around circular roadways. Tunnelling and Underground Space Technology, 111: 103873. (SCI檢索)
[7] 李博,汪佳飛,劉日成*,伍法權. (2021): 岩石裂隙壓剪變形破壞與非線性滲流特性。工程科學與技術,53(6):103-112。(EI檢索)
[8] H. Yang, X. Wu, H. Jing, L. Yu, R. Liu. (2021): Physical and mechanical behaviors of red sandstones and marbles after high-temperature treatment. Lithosphere, 2021, 8062826. (SCI檢索)
[9] X. Wang, T. Iura, Y. Jiang, Z. Wang, R. Liu. (2021): Deformation and mechanical characteristics of tunneling in squeezing ground: a case study of the west section of the Tawarazaka Tunnel in Japan. Tunnelling and Underground Space Technology, 109: 103697. (SCI檢索)
[10] N. Huang, G. Han, R. Liu, Y. Jiang. (2021): Mechanical behaviors of artificial samples containing multiple parallel joints during shearing under constant normal stiffness conditions. Geotechnique Letters, 11(2): 133-139. (SCI檢索)
[11] H. Yang, X. Wang, L. Yu, R. Liu. (2021): Effects of contact area and contact shape on nonlinear fluid flow properties of fractures by solving Navier-Stokes equations. Lithosphere, 2021, 8684428. (SCI檢索)
[12] W. Xu, X. Li, Y. Zhang, X. Wang, R. Liu, Z. He, J. Fan. (2021): Aperture measurements and seepage properties of typical single natural fractures. Bulletin of Engineering Geology and the Environment, 80: 8043–8058. (SCI檢索)
[13] W. Xu, Y. Zhang, X. Li, X. Wang, R. Liu, P. Zhao, Y. Zhang, J. Dai. Comprehensive identification of statistical homogeneity of fractured rock masses for a candidate HLW repository site, China. Engineering Geology, 293, 106279. (SCI檢索)
[14] Z. Dou, S. Tang, X. Zhang, R. Liu, C. Zhuang, J. Wang, Z. Zhou. (2021): Influence of shear displacement on fluid flow and solute transport in a 3D rough fracture. Lithosphere, 2021, 1569736. (SCI檢索)
[15] 張悅,李曉昭,許文濤,章楊松,餘興建,劉日成. (2021): 改進Miller法及其在裂隙岩體統計均質區劃分的應用。岩石力學與工程學報,40(3):533-544。
[16] 武東陽,蔚立元,蘇海健,吳疆宇,劉日成,周健. (2021): 單軸壓縮下加錨裂隙類岩石試塊裂紋擴展試驗及PFC3D模拟。岩土力學,42(6):1681-1692。
[17] 黃娜,蔣宇靜,程遠方,劉日成. (2021): 基于3D打印技術的複雜三維粗糙裂隙網絡滲流特性試驗及數值模拟研究。岩土力學,42(6):1659-1668。
2020年度
[1] R. Liu, N. Huang, Y. Jiang, H. Jing, L. Yu. (2020): A numerical study of shear-induced evolutions of geometric and hydraulic properties of self-affine rough-walled rock fractures. International Journal of Rock Mechanics and Mining Sciences, 127: 104211. (SCI檢索)
[2] R. Liu, C. Wang, B. Li, Y. Jiang, H. Jing. (2020): Modeling linear and nonlinear fluid flow through sheared rough-walled joints taking into account boundary stiffness. Computers and Geotechnics, 120: 103452. (SCI檢索)
[3] R. Liu, N. Huang, Y. Jiang, G. Han, H. Jing. (2020): Effect of shear direction change on shear-flow-transport processes in single rough-walled rock fractures. Transport in Porous Media, 133(3): 373-395. (SCI檢索)
[4] R. Liu, M. He, N. Huang, Y. Jiang, L. Yu. (2020): Three-dimensional double-rough-walled modeling of fluid flow through self-affine shear fractures. Journal of Rock Mechanics and Geotechnical Engineering, 12: 41-49. (SCI檢索)
[5] R. Liu, S. Lou, X. Li, G. Han, Y. Jiang. (2020): Anisotropic surface roughness and shear behavior of rough-walled plaster joints under constant normal load and constant normal stiffness conditions. Journal of Rock Mechanics and Geotechnical Engineering, 12: 338-352. (SCI檢索)
[6] R. Liu, L. Yu, Y. Gao, M. He, Y. Jiang. (2020): Analytical solutions for permeability of a three-dimensional fractal-like tree network model with fractures having variable widths. Fractals, 28(1): 2050013. (SCI檢索)
[7] R. Liu, G. Han, Y. Jiang, L. Yu, M. He. (2020): Shear behavior of multi-joint specimens: role of surface roughness and spacing of joints, 10(2): 113-118. (SCI檢索)
[8] N. Huang, R. Liu*, Y. Jiang. (2020): Evaluating the effect of aperture variation on the hydraulic properties of the three-dimensional fractal-like tree networks model. Fractals, 28(6): 2050112. (SCI檢索)
[9] Q. Zhang, X. Quan, H. Wang, B. Jiang, R. Liu*. (2020): A numerical solution of a circular tunnel in a confining pressure-dependent strain-softening rock mass. Computers and Geotechnics, 121, 103473. (SCI檢索)
[10] Q. Zhang, C. Shao, H. Wang, B. Jiang, Y. Jiang, R. Liu*. (2020): A fully coupled hydraulic-mechanical solution of a circular tunnel in strain-softening rock masses. Tunnelling and Underground Space Technology, 99, 103375. (SCI檢索)
[11] J. Zhang, R. Liu, L. Yu, H. Jing, Q. Yin. (2020): Investigations on representative elementary volume and directional permeability of fractal-based fracture networks using polygon sub-models. Fractals, 28(5): 2050085. (SCI檢索)
[12] Yu L, Zhang Z, Wu J, R. Liu, Qin H, Fan P. (2020): Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion. Theoretical and Applied Fracture Mechanics, 2020, 108: 102620. (SCI檢索)
[13] Q. Yin, H. Jing, R. Liu, H. Su, L. Yu, G. Han. (2020): Pore characteristics and nonlinear flow behaviors of granite exposed to high temperature. Bulletin of Engineering Geology and the Environment, 79(3): 1239-1257. (SCI檢索)
[14] G. Han, H. Jing, Y. Jiang, R. Liu, J Wu. (2020): Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant stiffness conditions. Rock Mechanics and Rock Engineering, 53: 31-57. (SCI檢索)
[15] C. Wang, Y. Jiang, R. Liu, C. Wang, Z. Zhang, S. Sugimoto. (2020): Experimental study of the nonlinear flow characteristics of fluid in 3D rough-walled fractures during shear process. Rock Mechanics and Rock Engineering, 53(6): 2581-2604. (SCI檢索)
[16] Q. Zhang, W. He, H. Wang, R. Liu, M. Lu, B. Jiang. (2020): Elasto-plastic solutions for expanding cavities in strain-hardening and/or softening soils. Tunnelling and Underground Space Technology, 107: 103660. (SCI檢索)
[17] X. Wang, Y. Jiang, R. Liu, B. Li, Z. Wang. (2019): A numerical study of equivalent permeability of 2-D fractal rock fracture networks. Fractals, 28(1): 2050014. (SCI檢索)
[18] Y. Gao, R. Liu, H. Jing, W. Chen, Q. Yin. (2019): Hydraulic properties of single fractures grouted by different types of carbon nanomaterial-based cement composites. Bulletin of Engineering Geology and the Environment, 79(5): 2411-2421. (SCI檢索)
[19] Q. Yin, X. Li, L. Yu, M. He, R. Liu. (2020): Solute Removal Analysis of a Large-scale Fracture Plane Considering Different Flow Paths and Different Hydraulic Head Differences.CMES-Computer Modeling in Engineering & Sciences, 124(1), 345–373. (SCI檢索)
[20] 尹乾,靖洪文,孟波,劉日成,吳應傑. 恒定法向剛度條件下三維粗糙裂隙面剪切力學特性,岩石力學與工程學報,2020,39(11):2213-2225. (EI檢索)
2019年度
[1] R. Liu, T. Zhu, Y. Jiang, B. Li, L. Yu, Y. Du, Y. Wang. (2019): A predictive model correlating permeability to two-dimensional fracture network parameters. Bulletin of Engineering Geology and the Environment, 78(3): 1589-1605. (SCI檢索)
[2] R. Liu, S. Lou, Y. Jiang. (2019): Recent advances in fluid flow in fractured porous media. Processes, 7(5), 255. (SCI檢索)
[3] N. Huang, R. Liu*, Y. Jiang, Y. Cheng, B. Li. (2019): Shear-flow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations. Journal of Hydrology, 571: 416-424. (SCI檢索)
[4] B. Li, Y. Li, Z. Zhao, R. Liu*. (2019): A mechanical-hydraulic-solute transport model for rough-walled rock fractures subjected to shear under constant normal stiffness conditions. Journal of Hydrology, 579: 124153. (SCI檢索)
[5] T. Meng, R. Liu*, X. Meng, D. Zhang, Y Hu. (2019): Evolution of the permeability and pore structure of transversely isotropic calcareous sediments subjected to triaxial pressure and high temperature. Engineering Geology, 253: 27-35. (SCI檢索)
[6] B. Li, R. Liu*, Y. Jiang. (2019): An experimental method to visualize shear-induced channelization of fluid flow in a rough-walled fracture. Hydrogeology Journal, 27(8): 3097-3106. (SCI檢索)
[7] Q. Yin, H. Jing, G. Ma, H. Su, R. Liu*. (2019): Laboratory investigation of hydraulic properties of deformable rock samples subjected to different loading paths. Hydrogeology Journal, 27(7): 2617-2635. (SCI檢索)
[8] Q. Yin, R. Liu, H. Jing, H. Su, L. Yu, L. He. (2019): Experimental study of nonlinear flow behaviors through fractured rock samples after high temperature exposure. Rock Mechanics and Rock Engineering, 52(9): 2963-2983. (SCI檢索)
[9] N. Huang, Y. Jiang, R. Liu, B. Li, S. Sugimoto. (2019): A novel three-dimensional discrete fracture network model for investigating the role of aperture heterogeneity on fluid flow through fractured rock masses. International Journal of Rock Mechanics and Mining sciences, 116: 25-37. (SCI檢索)
[10] N. Huang, Y. Jiang, R. Liu, B. Li. (2019): Experimental and numerical studies of the hydraulic properties of three-dimensional fracture networks with spatially distributed apertures. Rock Mechanics and Rock Engineering, 52: 4731-4746. (SCI檢索)
[11] Q. Zhang, C. Peng, R. Liu, B. Jiang, M. Lu. (2019): Analytical solutions for the mechanical behaviors of a hard roof subjected to any form of front abutment pressures. Tunnelling and Underground Space Technology, 85: 128-139. (SCI檢索)
[12] G. Han, H. Jing, R. Liu, H. Su, J. Wu, J. Wei. (2019): Experimental investigation on the mechanical behavior of red sandstone under the coupled effects of temperature and acidic etching. Arabian Journal of Geosciences, 12(18): 586. (SCI檢索)
[13] G. Han, H. Jing, H. Su, R. Liu, Q. Yin, J. Wu. (2019): Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Science, 78: 146. (SCI檢索)
[14] B. Li, Y. Mo, L. Zou, R. Liu, V. Cvetkovic. (2019): Influence of surface roughness on fluid flow and solute transport through 3D crossed rock fractures. Journal of Hydrology, No.124284. (SCI檢索)
2018年度
[1] R. Liu, B. Li, L. Yu, Y. Jiang, H. Jing. (2018): A discrete-fracture-network fault model revealing permeability and aperture evolutions of a fault after earthquakes. International Journal of Rock Mechanics and Mining Sciences, 107: 19-24. (SCI檢索)
[2] R. Liu, B. Li, Y. Jiang, L. Yu. (2018): A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks. Advances in Water Resources, 111: 289-300. (SCI檢索)
[3] R. Liu, B. Li, H. Jing, W. Wei. (2018): Analytical solutions for water-gas flow through 3D rock fracture networks subjected to triaxial stresses. Fractals, 26(3): 1850053. (SCI檢索)
[4] R. Liu, B. Li, Y. Jiang, H. Jing, L. Yu. (2018): Relationship between equivalent permeability and fractal dimension of dual-porosity media subjected to fluid-rock reaction under triaxial stresses. Fractals, 26(5): 1850072. (SCI檢索)
[5] R. Liu, N. Huang, Y. Jiang, H. Jing, B. Li, Y. Xia. (2018): Effect of shear displacement on the directivity of permeability in 3D self-affine fractal fractures. Geofluids, 1723019. (SCI檢索)
[6] R. Liu, T. Zhu, Y. Jiang, B. Li, L. Yu, Y. Du, Y. Wang. (2019): A predictive model correlating permeability to two-dimensional fracture network parameters. Bulletin of Engineering Geology and the Environment, doi:10.1007/s10064-018-1231-8. (SCI檢索) (accept)
[7] R. Liu, Y. Jiang, H. Jing, L. Yu. (2018): Nonlinear flow characteristics of a system of two intersecting fractures with different apertures. Processes, 6(7): 94. (SCI檢索)
[8] R. Liu, Y. Jiang. (2018): Special Issue: Fluid Flow in Fractured Porous Media. Processes, 6(10): 178. (SCI檢索)
[9] N. Huang, R. Liu*, Y. Jiang, B. Li, L. Yu. (2018): Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models. Advances in Water Resources, 113: 30-41. (SCI檢索)
[10] L. Yu, H. Su, R. Liu*, H. Jing, G. Li, M. Li. (2018): Effect of thermal treatment on the dynamic mechanical behaviors of limestone in quasi-vacuum and air-filled environments. Latin American Journal of Solids and Structures, 15(3): e25. (SCI檢索)
[11] Q. Yin, H. Jing, G. Ma, H. Su, R. Liu*. (2018): Investigating the roles of included angle and loading condition on the critical hydraulic gradient of real rock fracture networks. Rock Mechanics and Rock Engineering, 51(10), 3167-3177. (SCI檢索)
[12] N. Huang, Y. Jiang, R. Liu. (2018): Size effect on the permeability and shear induced flow anisotropy of fractal rock fractures. Fractals, 26(2): 1840001. (SCI檢索)
[13] Q. Yin, H. Jing, R. Liu, G. Ma, L Yu, H Su. (2018): Experimental study on stress-dependent nonlinear flow behavior and normalized transmissivity of real rock fracture networks. Geofluids, 8217921. (SCI檢索)
[14] C. Wang, Y. Jiang, R. Liu, C. Wang. (2018): Visualized experimental investigation on the gas-water distribution characteristics in intersecting fractures. Geofluids, 4273450. (SCI檢索)
[15] J. Zhang, L. Yu, H. Jing, R. Liu. (2018): Estimating the effect of fractal dimension on representative elementary volume of randomly distributed rock fracture networks. Geofluids, 7206074. (SCI檢索)
[16] Z. Wang, W. Li, L. Bi, L. Qiao, R. Liu, J. Liu. (2018): Estimation of the REV size and equivalent permeability coefficient of fractured rock masses with an emphasis on comparing the radial and unidirectional flow configurations. Rock Mechanics and Rock Engineering, 51(5): 1457-1471. (SCI檢索)
[17] G. Han, H. Jing, Y. Jiang, R. Liu, H. Su, J. Wu. (2018): The effect of joint dip angle on the mechanical behavior of infilled jointed rock masses under uniaxial and biaxial compressions. Processes, 6: 49. (SCI檢索)
2017年度
[1] R. Liu, L. Yu, Y. Jiang. (2017): Quantitative estimates of normalized transmissivity and the onset of nonlinear fluid flow through rough rock fractures. Rock Mechanics and Rock Engineering, 50: 1063-1071. (SCI檢索)
[2] R. Liu, L. Yu, Y. Jiang, Y. Wang, B. Li. (2017): Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks. Journal of Natural Gas Science and Engineering, 45: 771-785. (SCI檢索)
[3] R. Liu, H. Jing, L. He, T. Zhu, L. Yu, H. Su. (2017): An experimental study of the effect of fillings on hydraulic properties of single fractures. Environmental Earth Sciences, 76: 684. (SCI檢索)
[4] N. Huang, R. Liu*, Y. Jiang. (2017): Numerical study of the geometrical and hydraulic characteristics of 3D self-affine rough fractures during shear. Journal of Natural Gas Science and Engineering, 45: 127-142. (SCI檢索)
[5] L. Yu, R. Liu*, Y. Jiang. (2017): A review of critical conditions for the onset of nonlinear fluid flow in rock fractures. Geofluids, 2176932. (SCI檢索)
[6] L. Yu, H. Su, R. Liu*, H. Jing, Q. Meng, N. Luo. (2017): Experimental study of the influence of loading rate on tensile mechanical behavior of sandstone damaged by blasting. Arabian Journal of Geosciences, 10: 432. (SCI檢索)
[7] Q. Yin, G. Ma, H. Jing, H Wang, H. Su, Y. Wang, R. Liu*. (2017): Hydraulic properties of 3D rough-walled fractures during shearing: an experimental study. Journal of Hydrology, 555: 169-184. (SCI檢索)
[8] L. Yu, J. Zhang, R. Liu, H. Jing, K. Xie. (2017): Semi-empirical solutions for fractal-based hydraulic properties of 3D rock fracture networks. Geotechnique Letters, 7(3): 266-271. (SCI檢索)
[9] N. Huang, Y. Jiang, R. Liu, B. Li. (2017): Estimation of permeability of 3-D discrete fracture networks: An alternative possibility based on trace map analysis. Engineering Geology, 226: 12-19. (SCI檢索)
[10] N. Huang, Y. Jiang, R. Liu, B. Li. (2017): A predictive model of permeability for fractal-based rough rock fractures during shear. Fractals, 25(5): 1750051. (SCI檢索)
[11] J. Cai, W. Wei, X. Hu, R. Liu, J. Wang. (2017): Fractal characterization of dynamic fracture network extension in porous media. Fractals, 25(2): 1750023. (SCI檢索)
[12] L. Yu, T. Zhang, H. Su, H. Jing, R. Liu, Q. Zhang. (2017): Influence of heat treatment on dynamic and physical properties of anthracite coal. Geotechnique Letters, 7(3): 253-259. (SCI檢索)
[13] 杜岩,謝谟文,蔣宇靜,宋紅克,李博,劉日成. (2017): 應用激光多普勒測振儀的岩塊體累計損傷評價試驗研究,工程科學學報,39(1): 141-146. (EI檢索)
2016年度
[1] R. Liu, B. Li, Y. Jiang. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Advances in Water Resources, 2016, 88: 53-65. (SCI檢索)
[2] R. Liu, Y. Jiang, B. Li, L. Yu. Estimating permeability of porous media based on modified Hagen–Poiseuille flow in tortuous capillaries with variable lengths. Microfluidics and Nanofluidics, 2016, 20(8): 120. (SCI檢索)
[3] R. Liu, L. Yu, Y. Jiang. Fractal analysis of directional permeability of gas shale fracture networks: a numerical study. Journal of Natural Gas Science and Engineering, 2016, 33: 1330-1341. (SCI檢索)
[4] R. Liu, B. Li, Y. Jiang, N. Huang. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks. Hydrogeology Journal, 2016, 24: 1623-1649. (SCI檢索)
[5] R. Liu, B. Li, Y. Jiang. A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks. Computers and Geotechnics, 2016, 75: 57-68. (SCI檢索)
[6] R. Liu, Y. Jiang, B. Li. (2016): Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks. Geosciences Journal, 20: 415-426. (SCI檢索)
[7] B. Li, R. Liu*, Y. Jiang. (2016): Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. Journal of Hydrology, 2016, 538: 440-453. (SCI檢索)
[8] B. Li, R. Liu*, Y. Jiang. A multiple fractal model for estimating permeability of dual-porosity media. Journal of Hydrology, 2016, 540: 659-669. (SCI檢索)
[9] N. Huang, Y. Jiang, B. Li, R. Liu. A numerical method for simulating fluid flow through 3-D fracture networks. Journal of Natural Gas Science and Engineering, 2016, 33: 1271-1281. (SCI檢索)
[10] Y. Wang, X. Yin, H. Jiang, R. Liu, H. Su. A novel cloud model for risk analysis of water inrush in karst tunnels. Environmental Earth Sciences, 2016, 75: 1450. (SCI檢索)
[11] N. Huang, Y. Jiang, R. Liu, B. Li. A fast calculation method for estimating the representative elementary volume of three-dimensional fracture network. Special Topics and Reviews in Porous Media, 2016, 7(2): 99-106. (EI檢索)
[12] 劉日成,李博,蔣宇靜,蔚立元.三維交叉裂隙滲流特性的實驗和數值模拟研究. 岩石力學與工程學報, 2016, 35(增2): 3813-3821. (EI檢索)
[13] 劉日成, 李博, 蔣宇靜, 蔚立元.等效水力隙寬和水力梯度對岩體裂隙網絡非線性滲流特性的影響. 岩土力學, 2016, 37(11): 3165-3174. (EI檢索)
[14] 劉日成, 蔣宇靜, 李博,蔚立元,杜岩.岩體裂隙網絡非線性滲流特性研究. 岩土力學, 2016, 37(10): 2394-2400. (EI檢索)
[15] 劉日成, 蔣宇靜, 李博, 王肖珊, 徐幫樹, 蔚立元.基于逆Broyden秩1拟牛頓疊代法的岩體裂隙網絡滲流特性研究. 岩土力學, 2016, 37(1): 219-228. (EI檢索)
2015年度
[1] R. Liu, Y. Jiang, B. Li, X. Wang. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Computers and Geotechnics, 2015, 65: 45-55. (SCI檢索)
[2] 劉日成, 蔣宇靜, 李樹忱, 李博, 王肖珊.交叉裂隙水力學開度的計算及非線性水力特性研究. 岩土力學, 2015, 36(6): 1581-1590. (EI檢索)
2014年度
[1] 劉日成, 蔣宇靜, 李博, 王肖珊, 徐幫樹. 岩體裂隙網絡等效滲透系數方向性的數值計算. 岩土力學, 2014, 35(8): 2394-2400. (EI檢索)
發明專利:
[1] 劉日成,靖洪文,李樹忱,蔚立元,馮現大,劉楓,王蓥森. УСТРОЙСТВО И СПОСОБ ПРОВЕДЕНИЯИСПЫТАНИЯ ПРОСАЧИВАНИЯ ПРИ СДВИГЕ ДЛЯСЕТИ ТРЕЩИН,2777701,俄羅斯,2022.8.8. (授權)
[2] 劉日成,蔚立元,靖洪文,李樹忱,馮現大,李志聰,劉尚. Device and method for shear and two-phase flow test of fracture network,500448,盧森堡,2022.8.22. (授權)
[3] 劉日成,黨文剛,李樹忱,蔚立元,張強,李博,劉尚,胡明慧. 恒定法向剛度條件下岩石結構面動态雙向剪切實驗系統,CN202210136156.7,中國,2022. (授權)
[4] 劉日成,胡明慧,蔚立元,李樹忱,張強,李博,賈世平,于峰. 岩石結構面多向自由剪切實驗系統與實驗方法,CN 202210310585.1,中國,2022. (授權)
[5] 劉日成,李樹忱,劉振國,蔚立元,劉尚,劉蘭富,劉楓,王蓥森. 一種塑性混凝土地下連續牆錨注一體化結構與施工方法,ZL2021114708241,中國,2022.06.03. (授權)
[6] 劉日成,蔚立元,李樹忱,朱欣傑,程舍予,張晶,王曉琳,胡明慧. 水力剪切刺激幹熱岩儲層增透模拟實驗系統與實驗方法,ZL202111470121.9,中國,2022.06.10. (授權)
[7] 劉日成,朱欣傑,李樹忱,蔚立元,張強,吳學震,楊瀚清,韓剛. 岩石結構面多向自由剪切-滲流可視化實驗系統與方法,CN202210310033.0,中國,2022.12.23. (授權)
[8] 劉日成,尹乾,靖洪文,蔚立元,韓觀勝,蔣宇靜. 一種用于裂隙網絡剪切滲流試驗裝置及其試驗方法,ZL2020107041559,中國,2021. (授權)
[9] 劉日成,蔚立元,靖洪文,尹乾,韓觀勝. 一種裂隙網絡剪切-兩相流試驗裝置及試驗方法,ZL2020107041898,中國,2021. (授權)
[10] 劉日成,蔚立元,張晶,張站群. 一種用于三維裂隙岩樣水-力耦合加載裝置及加載方法,ZL2018104364005,中國,2020. (授權)
[11] 劉日成,靖洪文,張晶,蔚立元,蘇海健. 岩體裂隙網絡滲流各向異性測試及可視化系統,ZL2017101479642,中國,2020. (授權)
[12] 劉日成,蔚立元,靖洪文,李光雷,謝凱. 岩體裂隙網絡滲透系數方向性測試及可視化系統,ZL2017101479765,中國,2020. (授權)
[13] 蔚立元,劉日成,張濤,李衛,鞠明和,陳彥龍,李文傑,于峰. 一種隧道支護杆輸送機器人,ZL202210548789.9,中國,2023.02.17. (授權)
[14] 劉振國,劉日成,刀劍文,李樹忱,彭宏,蔚立元,鄭長洲,陳占江,王玉,李蓉. 一種雙層HDER膜片鎖接頭連接裝置及使用方法,ZL202210491004.9,2023. (授權)
[15] 吳疆宇,尹乾,劉日成,馬丹,蔚立元,姬永生,王逸鳴. 用于深地工程圍岩加固的木質納米纖維素-納米水泥改性注漿材料及其制備方法,ZL202111491044.5,中國,2023.3.3. (授權)
[16] 李樹忱,劉日成,趙世森,童裡,王曼靈,彭科峰,陳祎,王新宇. 一種丙烯酸樹脂注漿材料及其制備工藝,ZL202210027057.5,中國,2022.11.11. (授權)
[17] 李樹忱,劉日成,萬澤恩,陳祎,劉祥坤,王新宇,彭科峰,童裡. 一種發泡堵水用有機無機雜化注漿材料及制備工藝,CN202210027030.6,中國,2022.11.29. (授權)
[18] 李樹忱,劉日成,萬澤恩,陳祎,劉祥坤,王新宇,彭科峰,童裡. 一種改性矽酸鹽注漿加固材料及其制備方法與應用,CN202210026813.2,中國,2022. (授權)
[19] 尹乾,劉日成,靖洪文,劉江峰,蔚立元,江鄭. 一種應力作用下深部硐室裂隙圍岩滲透試驗裝置及方法,ZL202011372184.6,中國,2022. (授權)
[20] 蔚立元,劉日成,李樹憂,蘇海健,張明偉,武東陽,韓剛. 一種電纜隧道智能巡檢機器人,ZL202210558760.9,中國,2022. (授權)
[21] 李樹忱,萬澤恩,劉日成,彭科峰,周慧穎,童裡,王新宇,陳祎. 一種低溫加固用有機無機雜化注漿材料及其制備方法與應用,CN202210026812.8,中國,2022.11.29. (授權)
[22] 尹乾,張強,鄧天慈,吳疆宇,劉日成,靖洪文. 一種三維粗糙裂隙面卸荷誘發剪切滑移試驗裝置及方法,ZL 202111084572.9,中國,2022.5.24. (授權)
[23] 李博,趙志宏,葉鑫娜,沙鵬,劉日成,吳學震. 一種高溫和滲流作用下的測驗岩石用的真三軸試驗系統,ZL201810425000.4,中國,2020.9.4. (授權)
[24] 李博,夏才初,杜時貴,陳咭仟,劉日成,陳忠清,鐘振. 考慮岩石節理剪切過程中THMC耦合作用的試驗系統,ZL201610732783.1,中國,2019.4.5. (授權)
[25] 蔚立元,顧金才,靖洪文,蘇海健,吳興傑,劉日成. 一種深長隧道突水突泥三維模型試驗裝置及方法,ZL201510874596.2,中國,2017.7.7. (授權)
榮譽獎勵
[1] 2023年01月,獲COGE Scott Sloan Best Paper Award 2021(排名1)
[2] 2022年12月,獲徐州市自然科學優秀學術論文三等獎(1/6)
[3] 2022年12月,獲山東省技術發明一等獎(11/15)
[4] 2022年10月,獲中國發明協會發明創業成果獎一等獎(1/6)
[5] 2022年10月,獲伟德官网bv第一屆“優秀青年教師獎教金”(排名1)
[6] 2022年01月,入選江蘇省333高層次人才(第三層次)
[7] 2021年01月,獲中國産學研合作促進會合作創新成果一等獎(8/10)
[8] 2020年11月,獲江蘇省科學技術三等獎(基礎類)(1/7)
[9] 2019年09月,獲中國岩石力學與工程學會科技進步一等獎(13/15)
[10] 2018年09月,獲中國岩石力學與工程學會“青年科技獎”(金獎)(排名1)
[11] 2018年05月,入選中國博士後“國際交流計劃派出項目”
[12] 2018年01月,入選中國科協第三屆“青年人才托舉工程”人才項目
[13] 2017年11月,入選日本學術振興會“外國人特别研究員”(JSPS Fellow)
[14] 2017年06月,獲日本岩石力學學會優秀博士學位論文獎(排名1)
[15] 2016年06月,獲日本岩石力學學會優秀期刊論文獎(排名1)
[16] 2016年03月,獲日本長崎大學校長獎(排名1)
[17] 2015年07月,獲日本長崎大學特别研究獎學金
[18] 2015年04月,獲日本地盤工學會九州支部優良學生獎
[19] 2014年10月,獲亞洲岩石力學大會青年學者優秀論文獎學金
[20] 2013年06月,獲日本長崎大學和韓國濟州大學工學科學術交流會優秀論文主席獎
[21] 2013年04月,獲國家留學基金委(CSC)公派留學獎學金
[22] 2012年04月,獲基于日中韓大學間水環境技術者培育的外國留學生獎學金
[23] 2011年04月,獲日本JASSO學習獎勵費獎學金
聯系方式
通訊地址:江蘇省徐州市泉山區伟德官网bv深部岩土國家重點實驗室
Email:liuricheng@cumt.edu.cn
聯系電話:13952149590